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中文摘要 

在學習組合數學的過程中，施羅德數對於大部分人來說是陌生的。所以本

篇文章主要介紹路徑及施羅德數，並且對施羅德數做個探討。一開始會先簡單描

述我的研究動機與目的，以及介紹大、小施羅德數和它們的數列，讓讀者能夠有

一個基本的認識。再來就是透過施羅德數列的生成函數，進一步推導出大、小施

羅德數的一般公式，並且描述他們的關係。 

關鍵字：路徑、施羅德數、卡特蘭數、數列、生成函數。 
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Abstract 

During I learning Combinatorics, it is unfamiliar to most people for Schröder 

number. Therefore, this paper is main to introduce the path and Schröder 

number, and discuss for Schröder number. In the beginning, I simply introduce 

my motivation of the research, the target, large and small Schröder numbers, and 

their sequences, it will make the reader to realize the basic of it. And then, by 

using the generating function of the sequence of Schröder, and to derive the 

normal functions of large and small Schröder numbers, and describe their 

relationship. 

Keywords: path, Schröder number, Catalan number, sequence, generating function. 
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第一章 導論 

本章共有兩節，第一節研究動機與目的，第二節施羅德數的基本介紹。 

 

第一節 研究動機與目的 

「路徑問題」其實從我們很小的時候就已經接觸到了，例如當你在玩跳棋

或象棋時，是否曾經想過，如果要從 A 格到 B 格應該有哪幾種走法？又或者是

當你騎著腳踏車穿梭在你家附近縱橫交錯的巷子時，或許就曾想過，若從自己家

騎到某位住戶家，這兩家之間的路線到底會有多少條呢？ 

但是當時尚未正式接觸到關於路徑問題的我們，哪懂得什麼求路徑數的公

式，所以如果真的想要知道這些問題的答案，通常就是透過土法煉鋼的方式一條

一條的算出來了。 

直到上了國中、高中之後，學習到了最基本的組合運算，也或多或少接觸

到了一些基礎的路徑相關問題，例如從 A 地到 B 地的路徑數，開始可以透過一

些簡單的組合概念求得，慢慢地對這個問題有了初步的認識。 

到了大學、研究所之後，只要是開始學習數學相關領域的課程或閱讀相關

的文章書籍，組合數學基本上也是會接觸到的其中一個領域。而通常在剛開始學

習組合數學時，學習者必定會接觸到的基本問題就包含了路徑問題，而路徑也常

常被拿來當作許多組合問題的等價意義。 

然而談到了路徑問題，通常在給予不同的條件加以限制之後，便會產生一

些不一樣的新玩意兒，例如：旅行業務員問題、卡特蘭數⋯⋯等，令我頗感興趣。

於是就在指導教授的建議之下，閱讀了他推薦的一些與路徑相關的文獻，在文獻

中發現了「施羅德數」這個我第一次接觸到的新事物，引發了我想研究它的好奇

心，想試著了解它，想試著從它身上發現新大陸，獲得新知識，並且希望能夠為

一樣對施羅德數有興趣的人，提供更多的知識。 

然而，關於「施羅德數」這個名詞對大部分的人而言是陌生的。所以，一

開始我們便在下一節簡單地對施羅德數做一個初步的介紹。 
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第二節 施羅德數的基本介紹 

首先，施羅德數依其定義的不同被分為大、小兩種，雖然定義有些許不同，

但是兩者之間還是存在一定的關係，本節將會做個簡單介紹。（以下參考 Richard 

A. Brualdi 所著的「組合數學」[1]） 

現在假設在座標平面中整數點的網格上，有兩點分別為 ( 0 , 0 ) 和 ( n , n )，

n 為非負整數，然後將兩點拉出一條對角線，則此兩點、對角線、點 ( n , n ) 到

𝑥-軸的垂線與 𝑥-軸之間會形成一個下對角線的網格路徑，然後透過 

「平步」：水平橫移一格 ( 1 , 0 ) 

「垂步」：垂直上移一格 ( 0 , 1 )  

「斜步」：斜對角移動一格 ( 1 , 1 )  

三種移動方式從 ( 0 , 0 ) 到 ( n , n )，且移動的路徑不可超過對角線 𝑦 = 𝑥 的矩

陣網格路徑，這種路徑稱為「施羅德路徑」，而此種路徑的數目即為「大施羅德

數」Rn 。根據此定義得到大施羅德數數列為 

{Rn}n≥0 = {1, 2, 6, 22, 90, 394, 1806,⋯⋯ }，         (1.1) 

我們可以進一步得到一般公式 

Rn =∑
1

n − r + 1

n

r=0

 
(2n − r)!

r! [(n − r)!]2
 。  

再來是關於小施羅德數。給定一字母串 𝑎1𝑎2𝑎3⋯𝑎m ，其中 m ≥ 1，而且 

m = n + 1，現在假設 𝑎i 均為字母 𝑥，則對這個字母串添加括弧的方法數，就是

指「小施羅德數」sm。根據以上定義，可以得到小施羅德數數列為 

{sm}m≥1 = {1, 1, 3, 11, 45, 197, 903,⋯⋯ }。         (1.2) 

進而觀察大、小施羅德數的兩個數列，我們可以發現兩者之間的關係為 

Rn = 2sm ，                        (1.3) 

其中 n ≥ 1。而這兩者之間顯現出的關係，我們可以透過他們的生成函數得知。 

這一節已大致介紹了大、小施羅德數，之後會在第二章中詳細說明施羅德

數的定義與它們的其他對應關係；而在第三章中則會探討施羅德數之生成函數。 
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第二章 路徑與施羅德數的簡介 

本章節共有四節，第一節介紹路徑，第二節介紹大、小施羅德數，第三節

描述小施羅德數的對應關係，第四節則為本章的結論。 

第一節 路徑 

在 Richard A. Brualdi 所著的「組合數學」[1]中提到，我們考慮一個整數

座標平面中整數點的網格（integral lattice）。給定兩個整數點 ( r , s ) 和 ( p , q )，

其中 p ≥ r 及 q ≥ s ，然後透過平步（horizontal step）H = ( 1 , 0 ) 和垂步

（vertical step）V = ( 0 , 1 ) 兩種方式（在方位上，H 即代表向東移動一單位，V

即代表向北移動一單位），可以構成從 ( r , s ) 到 ( p , q ) 的矩陣網格路徑。在

圖 2-1 中顯示了以上所述。 

 

圖 2-1. 點 ( r , s ) 到 ( p , q ) 的矩陣網格路徑 

例題 2.1 

在一個平面座標上給定兩點 ( 0 , 0 ) 和 ( 6 , 5 )，如圖 2-2 所示。 

 
圖 2-2. 點 ( 0 , 0 ) 到 ( 6 , 5 ) 的矩陣網格路徑 
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圖中我們可以看見有一條以 ( 0 , 0 ) 為起點的路徑，此路徑的移動方式為： 

  H , V , H , H , V , H , H , V , V , H , V  

前往至 ( 6 , 5 )，其中 H 代表平步，而 V 則是代表垂步。顯而易見地，在這個例

題中我們可以知道圖中的路徑是由 6 個 H 和 5 個 V 所形成的。 

根據上述的例題，從 ( 0 , 0 ) 到 ( 6 , 5 ) 的路徑是由 6 個 H 和 5 個 V 所組

成的。那麼我們只要變換這 6 個 H 和 5 個 V 的順序，便可以得到不一樣的路徑。

然而，以上描述可以「看作是在 11 個空格中，挑選 6 個填入 H，剩下的 5 個填

入 V」（[1]）的作法，兩種作法所得到的路徑數與排列數是一一對應的，即所得

到的路徑數與排列數相等。因此，藉由以上敘述，我們可以推得路徑數的求法。 

 

定理 2.1.1 （引述自[1]中 p.211 的定理 8.5.1）從整數點 ( r , s ) 到 ( p , q ) 的矩

陣網格路徑的路徑數等於二項式係數 

(
p − r + q − s

p − r
) = (

p − r + q − s

q − s
)。                               (2.1) 

證明：首先，我們知道從 ( r , s ) 到 ( p , q ) 的路徑是由 ( p – r ) 個H和 ( q – s )

個 V 所形成，而透過這 ( p – r＋q – s ) 個移動方式之順序的不同，將會產生不

一樣的路徑。因此，路徑數的求法可以等同於是在 ( p – r＋q – s ) 個空格中，挑

選出 ( p – r ) 個空格填入 H，剩下的 ( q – s ) 個空格填入 V 的排列數。所以透

過乘法原理，以上敘述可以寫成 

(
p − r + q − s

p − r
) (
(p − r + q − s) − (p − r)

q − s
) 

= (
p − r + q − s

p − r
) (
q − s

q − s
) 

= (
p − r + q − s

p − r
) = (

p − r + q − s

q − s
)   。 

上述求得的排列數即為我們要求的路徑數。                                        ■ 
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第二節 施羅德數（Schröder Number） 

本節主要是針對施羅德數的組合定義作介紹。事實上，施羅德數根據其組

合意義的不同被區分為大、小兩種。其中施羅德討論的「括號問題」所描述的是

小施羅德數，而大施羅德數則是以「矩陣網格路徑」來做出定義。所以接下來會

詳細介紹兩者。 

1. 大施羅德數（Large Schröder Number） 

一般來說，大施羅德數 Rn 的組合意義較常看見的是經過計算一個整數點到

另外一個整數點的所有可能路徑的方式求得。以下描述了兩種不同的定義方式。 

第一種是在一個座標平面上整數點的網格中，給予兩點 ( 0 , 0 ) 和 ( n , n )，

其中 n 為一整數且 n ≥ 0，然後透過「平步」、「垂步」和「斜步」的移動方式，

且移動的路徑不可穿過對角線 𝑦 = 𝑥  （即從 ( 0 , 0 ) 到 ( n , n ) 所拉出的直線）。

在此情況下從 ( 0 , 0 ) 到 ( n , n ) 的矩陣網格路徑被稱為「施羅德路徑」（名稱

得知於[1]中），如圖 2-3 所示，而此路徑的路徑數即為大施羅德數 Rn。（[10]） 

 

   圖 2-3. 點 ( 0 , 0 ) 到 ( n , n ) 的施羅德路徑 
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根據定義，我們可以舉一些簡單的例子，如下圖的 R1 和 R2 ： 

(1) R1 = 2 ，表示從點 ( 0 , 0 ) 到 ( 1 , 1 ) 的施羅德路徑的路徑數。 

 

圖 2-4. 點 ( 0 , 0 ) 到 ( 1 , 1 ) 的所有施羅德路徑 

 

(2) R2 = 6 ，表示從 ( 0 , 0 ) 到 ( 2 , 2 ) 的施羅德路徑的路徑數。 

 

圖 2-5. 點 ( 0 , 0 ) 到 ( 2 , 2 ) 的所有施羅德路徑 

 

 

另外一種定義方式則參考文獻[4]。在一個座標平面上整數點的網格中，給

定兩點 ( 0 , 0 ) 和 ( 2n , 0 )，其中 n 為一整數且 n ≥ 0，然後透過「兩倍的平步」

（移動 ( 2 , 0 )）、「斜步」（移動 ( 1 , 1 )）和「下斜步」（即移動( 1 ,–1 )）

三種移動方式，且只允許在 𝑥-軸的上方移動的情況下，從 ( 0 , 0 ) 到 ( 2n , 0 ) 

的矩陣網格路徑的路徑數即為大施羅德數 Rn。在圖 2-6，圖 2-7 也根據上述定義

分別圖示了 R1 和 R2。 
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(1) R1 = 2 ，表示從點 ( 0 , 0 ) 到 ( 2 , 0 ) 的路徑數。 

 

圖 2-6. 點 ( 0 , 0 ) 到 ( 2 , 0 ) 的所有路徑 

 

(2) R2 = 6 ，表示從點 ( 0 , 0 ) 到 ( 4 , 0 ) 的路徑數。 

 

圖 2-7. 點 ( 0 , 0 ) 到 ( 4 , 0 ) 的所有路徑 

透過以上描述的兩種方式所求得的路徑數便是大施羅德數。那麼接下來，我們可

以透過第一種定義（施羅德路徑）來求得大施羅德數。 

首先，我們在第二章第一節中已經討論過路徑數的求法，那麼接下來再對

路徑的移動方式加入一些限制。（以下敘述參考文獻[1]） 

 

卡特蘭路徑（Catalan path） 

一開始假設在一個座標平面上整數點的網格中，給定點 ( 0 , 0 ) 和 ( n , n )，

現在考慮從 ( 0 , 0 ) 移動至 ( n , n ) 的路徑，路徑的移動方式為「平步」或「垂

步」且要求不可穿過對角線 𝑦 = 𝑥 。 
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然而從 ( 0 , 0 ) 到 ( n , n ) 且要求不可穿過對角線 𝑦 = 𝑥 的路徑數，會等

價於從 ( 0 , 1 ) 到 ( n , n+1 ) 的路徑數，扣除掉從 ( 0 , 1 ) 出發並經過對角線

 𝑦 = 𝑥 上的點到達 ( n , n+1 ) 的路徑數，其中從 ( 0 , 1 ) 出發並經過對角線

 𝑦 = 𝑥 上的點到達 ( n , n+1 ) 的路徑會與從 ( 1 , 0 ) 出發到達 ( n , n+1 ) 的路

徑一一對應（詳細說明可參考[2]，p.31 圖 1-20 及 p.110），所以利用數學式子可

以表達成 

(
2n

n
) − (

2n

n + 1
) = (1 −

n

n + 1
) (
2n

n
) =

1

n + 1
(
2n

n
)  ， 

根據以上敘述所求得的路徑數即為我們所熟知的卡特蘭數 𝐶n，所以卡特蘭

數的一般公式為 

 𝐶n =
1

n + 1
(
2n

n
)。                                             (2.2) 

 

施羅德路徑（Schröder path） 

現在，除了平步和垂步之外，還允許走斜對角的「斜步」。所以我們重新

敘述路徑的移動： 

給定兩點 ( 0 , 0 ) 和 ( n , n )，透過「平步」、「垂步」及「斜步」的移動

方式，從 ( 0 , 0 ) 移動到 ( n , n ) 且要求不穿過對角線 𝑦 = 𝑥 的路徑，此種路徑

即稱做「施羅德路徑」，而此路徑的路徑數稱為「大施羅德數」。 

 

定理 2.2.1 當 n ≥ 0 時，大施羅德數 

Rn =∑ 
1

n − r + 1

n

r=0

 
(2n − r)!

r! ((n − r)!)
2  。                           (2.3) 

證明：（以下參考文獻[1]）路徑從 ( 0 , 0 ) 出發，可以透過平步、垂步和斜步

到達 ( n , n )，那麼現在如果我們扣除所有「斜步」的走法後，會剩下平步和垂

步的走法。假設 r 為路徑中走斜步的次數。那麼扣除斜步後，會剩下 ( n – r ) 個

平步和 ( n – r ) 個垂步（因為一個斜步對應一個平步和一個垂步），所以扣除

斜步後的路徑就等同於「透過平步和垂步，不允許穿過對角線 𝑦 = 𝑥 ，從 ( 0 , 0 ) 
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移動到 ( n – r , n – r ) 的路徑」，這路徑的路徑數即為卡特蘭數 𝐶n−r。 

 

接下來，在 ( n – r ) 個平步和 ( n – r ) 個垂步之間有 ( 2n – 2r + 1 ) 個空

隙，現在在這些空隙中插入剛剛扣除的 r 個斜步，這種做法的方法數等價於方

程式  𝑥1 + 𝑥2 +⋯+ 𝑥2n–2r + 𝑥2n–2r+1 = r  的非負整數解的個數，此個數為 

(
2n– 2r + 1 + r − 1

r
) = ( 

2n − r

r
 )。 

而綜合以上的敘述，描述的即是施羅德路徑，因此對於在施羅德路徑中存

在著的 r 個斜步的移動，我們可以求得大施羅德數 

Rn =∑ ( 𝐶n−r)

n

r=0

( 
2n − r

r
 ) 

 = ∑ 
1

n − r + 1
(
2n − 2r

n − r
)

n

r=0

 
(2n − r)!

r! (2n − 2r)!
 

= ∑ 
1

n − r + 1

n

r=0

 
(2n − r)!

r! ((n − r)!)2
                                                 ■ 

 

 

因此，根據定義，我們可以得知當 n 為非負整數時會構成一個大施羅德數

列 {Rn }n≥0：([6]) 

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, ⋯⋯。 
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接下來，我們轉而介紹小施羅德數： 

 

 

2. 小施羅德數（Small Schröder Number） 

（以下引述至 R. P. Stanley：Hipparchus, Plutarch, Schröder and Hough（1997）

([8])） 

在 R. P. Stanley 的一篇文章中介紹弗里德里希·威廉·卡爾·恩斯特·施羅德

（Friedrich Wilhelm Karl Ernst Schröder）是一位於 1841 年出生在曼海姆的德

國邏輯學家，他的主要工作是在基礎數學上，特別是關於組合數學、實變函數理

論、數理邏輯等。 

而關於施羅德在組合數學方面的研究，在他所提出的論文之中，最著名的

就是他討論了四種「加括弧的問題」。而 R. P. Stanley 在文章中只針對前兩個問

題做一個討論，即描述關於加括弧於字母串（假設所有的字母皆為 𝑥）中之方法

數的問題。 

在這個討論中，給定了對於一個括弧的正式定義，就是將括弧定義為一個

數列 {B1, B2, ⋯ , Bk}，其中 k ≥ 2（因為至少要兩組，括弧才有意義），且數列中

的 Bi 代表的是 𝑥 的一組加括弧的字母串，其中對於某些只包含一個字母 𝑥 的 Bi，

則其外圍括弧將會被隱藏。例如： 

( 𝑥𝑥 ) ( ( 𝑥𝑥𝑥𝑥𝑥 ) 𝑥 ( 𝑥𝑥 ) ) ( 𝑥𝑥 ( 𝑥𝑥 ) ) 

在此字母串中可以看到 B1 = 𝑥𝑥 ，B2 = ( 𝑥𝑥𝑥𝑥𝑥 ) 𝑥 ( 𝑥𝑥 )，而 B3 = 𝑥𝑥 ( 𝑥𝑥 )，

就如同是一個 (B1)(B2)(B3) 的三元之運算一般。 

而 R. P. Stanley 也在文中提到了一些等價方法來描述加括弧的字母串，分別

是平面樹（plane trees）、多邊形的切割（polygon dissections）和 Łukasiewicz 

字元，且透過這三種對應關係，得到以下論點： 

假設 sm 代表一包含 m 個 𝑥 的字母串之加括號方法的總數，其中 m 為正整

數，則它也等價於 
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(1) 包含 m 個端點（endpoint）且無一階頂點的平面樹之個數，其中「端點

是指葉子（leaf），非端點的頂點則稱為內點（internal node），而「一

階頂點」是指只有一個子點的內點。然後因為 s1 及 s2 很容易可以得知，

所以圖 2-8，圖 2-9 分別舉例 s3 及 s4。 

 

i.  s3 = 3： 

 

圖 2-8. 三個端點的平面樹個數 

 

 

ii. s4 = 11： 

 

 

圖 2-9. 四個端點的平面樹個數 
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(2) 一個凸(m＋1)邊形的切割數，其中切割的形狀不侷限為三角形，且切割

的對角線要求不相交。圖 2-10，圖 2-11 也分別舉例 s3 及 s4。 

 

i.  s3 = 3：凸四邊形的切割數。 

 

 

圖 2-10. 四邊形的切割數 

 

ii. s4 = 11：凸五邊形的切割數。 

 

 

圖 2-11. 五邊形的切割數 

 

(3) 包含 0個 𝑥1 和 n個 𝑥0 的 Łukasiewicz字元之數量。（有興趣請參考[8] [11]） 

 

然而 R. P. Stanley 指出，施羅德所提出的第二個問題便是在求 sm 的總數，

而這個 sm 代表的就是「小施羅德數」。接下來我們便在這裡明確地對小施羅德

數做出定義： 

給定一排由 m 個字母所組成的字母串 𝑎1𝑎2𝑎3⋯𝑎m ，其中 m 為正整數；現

在假設 𝑎i 均為字母 𝑥，則字母串形式如下： 

𝑥 𝑥 𝑥 𝑥 𝑥 ⋯⋯𝑥 𝑥 𝑥⏟            
m個
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再來，於這串字母串中插入數個括弧，要滿足下列三個條件： 

 

(1) 將括弧加入字母串時具有先後順序，例如：( 𝑥𝑥 ) 𝑥 與 𝑥 ( 𝑥𝑥 ) 是兩種不

同的方法。 

(2) 當一個括弧如果只包含一個字母 𝑥，或者包含全部 m 個 𝑥 時，則字母外圍

括弧可以隱藏。 

(3) 在同一種方法中，此排內同一組的 j（ j ≤ m 且為正整數）個字母串只可

以使用一個括弧，例如：( (𝑥𝑥) ) 𝑥𝑥 使用了兩個括弧包含了 𝑥𝑥 是不允許

的。 

 

則根據以上定義，對於包含 m 個 𝑥 之字母串所能夠構成的所有可能的加括

弧的方法之總數，我們就定義為小施羅德數 sm。 

因此，當 m 為非負整數時，構成小施羅德數數列 {sm}m≥1：([7]) 

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, ⋯⋯。 
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第三節 小施羅德數的對應關係 

在前一節中提到了關於小施羅德數的幾個與其定義等價的對應關係，而在

這一節中我們將看看加括弧的方法、凸(m＋1)邊形的切割與包含 m 個端點且無

一階頂點之平面樹的對應關係做一個討論。(以下參考[1][2]) 

先看到圖 2-12 中有一個凸六邊形，假設底邊為基邊，基邊代表的是加括弧

方法的最後結果，並依順時針方向從基邊的下一條邊(即基邊左側)開始依序編上

字母 𝑥，透過圖可以看出五個 𝑥 組成的字母串加括弧的做法與凸六邊形的切割方

式是一一對應的。 

 

 

圖 2-12. 加括弧的方法與凸多邊形的切割對應 

 

接下來，除了加括弧的方法與凸多邊形之切割的對應關係之外，再加上一

個包含五個端點且無一階頂點之平面樹的對應。其中端點與 𝑥 對應，而內點與括

號對應，根則是與加括弧的最後結果對應（即與基邊對應）。對應關係如圖 2-13

所示。 
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圖 2-13. 加括弧的方法、凸多邊形切割與平面樹的對應 

 

所以依此類推，我們可以清楚的知道在前一節裡小施羅德數 s4 的加括弧的

方法、凸五邊形的切割與包含四個端點且無一階頂點的平面樹之間的對應關係，

其對應關係如圖 2-14、圖 2-15 所示。(圖 2-14、圖 2-15 參考文獻[3]) 

 
圖 2-14. 小施羅德數的對應關係圖(1) 
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圖 2-15. 小施羅德數的對應關係圖(2) 

 

因此，我們也可以利用本節所討論的方法，將其他的小施羅德數之間的對

應關係如同圖 2-14 和圖 2-15 一樣繪製出來。 
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第四節 結論 

在這個章節裡，一開始便於第一節中把路徑做一個基本的介紹，讓第一次

接觸的讀者能夠快速地瞭解路徑在組合數學中的意義。在第一節也介紹了路徑數

的求法，並且利用其他等價的方法，將找路徑數的方法技巧性地轉化成其他較容

易推導結果的做法。然而，以上所描述的方式在組合數學中也很常見。 

接下來在第二、三節裡，依序介紹了大、小施羅德數。首先可以知道大施

羅德數主要以路徑為定義，透過對移動方式的限制，進而求得大施羅德數。而關

於小施羅德數先是介紹了它的歷史，然後描述其定義是以加括弧的方法來求得，

並且列出了一些等價的對應關係，然後於第三節中對這些關係用圖來加以說明。

而且在這一節中我們也可以看到，雖然是從不同的角度出發，但是卻能夠求得同

樣的數及數列，令我感到驚奇！ 

路徑在組合數學中經常被用來解釋各類型的題目，讓這些題目的解法能夠

更容易被理解，或者讓答案更容易被推導。除此之外，各種加諸於路徑的限制條

件，也可以讓我們得到很多有趣的問題，好比施羅德數就是其中一種。 
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第三章 施羅德數之生成函數的探討 

本章共有三節，前兩節分別討論大、小施羅德數之生成函數及推導出兩者

的一般公式，第一節為大施羅德數之生成函數的推導，第二節則為小施羅德數之

生成函數的推導，最後在第三節做個總結。(以下參考自[1]) 

 

第一節 大施羅德數之生成函數的推導 

一開始我們假設 𝐹(𝑥) 代表與大施羅德數列對應的生成函數，則 

𝐹(𝑥) = R0 + R1𝑥 + R2𝑥
2 +⋯Rn𝑥

n +⋯ =∑Rn𝑥
n

∞

n=0

 。         (3.1) 

接著下來看看從點 ( 0 , 0 ) 到 ( n , n ) 的施羅德路徑。首先，我們可以知

道 R0 = 1。再來，我們如果考慮第一步的走法，可以分為兩種： 

第一種：第一步為「斜步」時，則此類的路徑數就可視為是從 ( 1 , 1 ) 走

到 ( n , n ) 的施羅德路徑數，此數等於 Rn−1。 

第二種：第一步為「平步」，則可視為是從 ( 1 , 0 ) 走到 ( n , n ) 的路徑。

現在，假設點 ( i , i ) 為路徑第一個經過 𝑦 = 𝑥 線上的點

 ( i = 1, 2,⋯ , n )，所以路徑就會變成： 

(1 , 0) → ( i , i − 1 ) → ( i , i ) → ( n , n ) 

的施羅德路徑，因此我們可以推得此類的路徑數為 Ri−1Rn−i。 

所以透過以上描述，我們可以得到一個遞迴關係式( n ≥ 1 ) 

Rn = Rn−1 +∑Ri−1Rn−i

n

i=1

 

 = Rn−1 +∑RiRn−1−i

n−1

i=0

 。                                    (3.2) 

接著將式子(3.2)的兩邊同乘 𝑥n ，再從 n = 1至 n = ∞ 取和，得到 
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∑ Rn 𝑥
n

∞

n=1

= x∑(Rn−1 𝑥
n−1)

∞

n=1

+ 𝑥∑[ ∑(Ri 𝑥
i)(Rn−1−i 𝑥

n−1−i)

n−1

i=0

 ]

∞

n=1

。    (3.3) 

由式子(3.3)可以得到 

𝑥[𝐹(𝑥)]2 + (𝑥 − 1)𝐹(𝑥) + 1 = 0 。  

因此， 𝐹(𝑥) 為二元一次方程式 

𝑥𝑢(𝑥)2 + (𝑥 − 1)𝑢(𝑥) + 1 = 0                                      (3.4) 

的一個解。而方程式(3.4)的解為 

 𝑢1(𝑥) =
(1 − 𝑥) + √𝑥2 − 6𝑥 + 1

2𝑥
 

和 

𝑢2(𝑥) =
(1 − 𝑥) − √𝑥2 − 6𝑥 + 1

2𝑥
 。 

因為 𝐹(0) = 1，而 lim𝑥→0+ 𝑢1(𝑥) = ∞  不合。所以我們可以得到 

𝐹(𝑥) = 𝑢2(𝑥) =
(1 − 𝑥) − √𝑥2 − 6𝑥 + 1

2𝑥
 。                     (3.5) 

因此我們可以得到定理 3.1.1。 

 

定理 3.1.1 當 n ≥ 1 時，透過大施羅德數列的生成函數，我們可以求得大施羅德

數的一般公式 

Rn = ( 
3

2
 )
n+1

∑ (−1)r(3−2r)
(2(n − r))!

r! (n − r)! (n − 2r + 1)!
 

⌊ 
n+1
2  ⌋

r=0

，     (3.6) 

且 R0 = 1 。 
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證明：令 𝑧 = 𝑥2 − 6𝑥 ，所以 √𝑥2 − 6𝑥 + 1 = √1 + 𝑧 。接著將 √1 + 𝑧 依牛頓二項

式定理展開 

√1 + 𝑧 =∑( 

1
2
i
 )

∞

i=0

𝑧i  ，  

其中 ( 
1

2
i
 ) = { 

(
1

2
)(
1

2
−1)(

1

2
−2)⋯(

1

2
−i+1)

i !
 ，若 i ≥ 1 ；    

             0                   ，若 i = 0 。
 

又 

𝑧i = (𝑥2 − 6𝑥)i = 𝑥i(𝑥 − 6)i 

= 𝑥i∑( 
i

r
 ) (−6)i−r

i

r=0

𝑥r 

  = ∑( 
i

r
 ) (−1)i−r(6)i−r𝑥i+r

i

r=0

 。 

所以 

  √1 + 𝑧 =∑∑(−1)i−r(6)i−r ( 

1
2
i
 ) (

i

r
 ) 𝑥i+r

i

r=0

∞

i=0

 

= 1 + ∑∑(−1)i−r(6)i−r ( 

1
2
i
 ) (

i

r
 ) 𝑥i+r

i

r=0

∞

i=1

 。  

當i ≥ 1時， ( 
1

2
i
 )可以展開成 

( 

1
2
i
 ) =

(−1)i−1

(22i−1)i
( 
2i − 2

i − 1
 )   。  

現在令 n = i + r，0 ≤ r ≤ i，我們有 i = n − r ≥ r，得到 r ≤ ⌊ 
n

2
 ⌋，其中 

⌊ 
n

2
 ⌋ 代表不大於 

n

2
 的最大整數。因此 
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√1 + 𝑧  = 1 +∑∑(−1)n−2r(2)n−2r(3)n−2r ( 

1
2

n − r
 ) (
n − r

r
 ) 𝑥n

⌊ 
n
2
 ⌋ 

r=0

∞

n=1

 

 = 1 +∑∑(2)n−2r(3)n−2r
(−1)n(−1)n−r+1

(n − r)22(n−r)−1
( 
2(n − r) − 2

n − r − 1
 ) (
n − r

r
 ) 𝑥n

⌊ 
n
2 ⌋ 

r=0

∞

n=1

 

= 1 +∑∑(−1)2n−r+1
(3)n−2r

(n − r)2n−1
 

(2(n − r) − 2)!

(n − r − 1)! (n − r − 1)!
 
(n − r)!

r! (n − 2r)!
𝑥n

⌊ 
n
2 ⌋ 

r=0

∞

n=1

 

   = 1 +∑∑(−1)r+1
(3)n−2r

2n−1
 

(2n − 2r − 2)!

r! (n − r − 1)! (n − 2r)!
 𝑥n

⌊ 
n
2 ⌋ 

r=0

∞

n=1

 。 

所以 

√𝑥2 − 6𝑥 + 1 = 1 − 3𝑥 +∑∑(−1)r+1
(3)n−2r

2n−1
 

(2n − 2r − 2)!

r! (n − r − 1)! (n − 2r)!
 𝑥n

⌊ 
n
2 ⌋ 

r=0

∞

n=2

， 

(3.7) 

則式子(3.5)會變成 

𝐹(𝑥) =
1 − 𝑥 − (1 − 3𝑥)

2𝑥
+∑∑(−1)r

(3)n−2r

2n
 

(2n − 2r − 2)!

r! (n − r − 1)! (n − 2r)!
 𝑥n−1

⌊ 
n
2 ⌋ 

r=0

∞

n=2

 

= 1 +∑

[
 
 
 

  ∑ (−1)r
(3)n−2r+1

2n+1
 

(2(n − r))!

r! (n − r)! (n − 2r + 1)!
 

⌊ 
n+1
2  ⌋

r=0

  

]
 
 
 ∞

n=1

𝑥n 。 

因此我們可以得證式子(3.6)：當 n ≥ 1 時， 

Rn = ( 
3

2
 )
n+1

∑ (−1)r(3−2r)
(2(n − r))!

r! (n − r)! (n − 2r + 1)!
 

⌊ 
n+1
2
 ⌋ 

r=0

 。              ∎ 
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雖然透過生成函數推導出來的大施羅德數的一般公式與第二章第二節中由

定義推導出來的長相不同，但因為出發點相同，所以求出來的大施羅德數是一樣

的。以下我們就藉由公式舉出一些例子。 

n 𝐑𝐧 

1 R1 = ( 
3

2
 )
2 

∑(−1)r(3−2r)
(2(1 − r))!

r! (1 − r)! (1 − 2r + 1)!
 

⌊ 1 ⌋ 

r=0

= ( 
9

4
 ) ( 

2!

2!
−
1

9
∙
0!

0!
) = 2 

2 
R2 = ( 

3

2
 )
3 

∑(−1)r(3−2r)
(2(2 − r))!

r! (2 − r)! (2 − 2r + 1)!
 

⌊ 
3
2
 ⌋ 

r=0

 

= ( 
27

8
 ) ( 

4!

2! 3!
−
1

32
∙
2!

1!
) = 6 

3 

R3 = ( 
3

2
 )
4 

∑(−1)r(3−2r)
(2(3 − r))!

r! (3 − r)! (3 − 2r + 1)!
 

⌊ 2 ⌋ 

r=0

 

= ( 
81

16
 ) ( 

6!

3! 4!
−
1

32
∙
4!

2! 2!
+
1

34
∙
2!

2!
) = 22 

4 
R4 = ( 

3

2
 )
5 

∑(−1)r(3−2r)
(2(4 − r))!

r! (4 − r)! (4 − 2r + 1)!
 

⌊ 
5
2
 ⌋ 

r=0

 

= ( 
243

32
 ) ( 

8!

4! 5!
−
1

32
∙
6!

3! 3!
+
1

34
∙
4!

2! 2!
) = 90 

5 

R5 = ( 
3

2
 )
6 

∑(−1)r(3−2r)
(2(5 − r))!

r! (5 − r)! (5 − 2r + 1)!
 

⌊ 3 ⌋ 

r=0

 

= ( 
729

64
 ) ( 

10!

5! 6!
−
1

32
∙
8!

4! 4!
+
1

34
∙

6!

2! 3! 2!
−
1

36
∙
4!

3! 2!
) = 394 
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第二節 小施羅德數之生成函數的推導 

一開始同樣我們假設 𝐺(𝑥) 代表與小施羅德數列對應的生成函數，則 

𝐺(𝑥) = s1𝑥 + s2𝑥
2 +⋯sn𝑥

n +⋯ =∑sn𝑥
n

∞

n=1

 。                    (3.8) 

根據小施羅德數的定義，其為描述對字母串加括弧的方法數，而各種可能

的加括弧方式的遞迴意義也給出 (根據[1]的定理 8.5.6) 

𝐺(𝑥) = 𝑥 + 𝐺(𝑥)2 + 𝐺(𝑥)3 +⋯+ 𝐺(𝑥)n +⋯  

= 𝑥 +
𝐺(𝑥)2

1 − 𝐺(𝑥)
 

因此我們可以得到一個二元一次方程式 

2𝐺(𝑥)2 + (−𝑥 − 1)𝐺(𝑥) + 𝑥 = 0 ， 

而且可以知道 𝐺(𝑥) 為方程式 

2𝑢(𝑥)2 + (−𝑥 − 1)𝑢(𝑥) + 𝑥 = 0                                   (3.9) 

的一個解。而方程式(3.9)的解為 

 𝑢1(𝑥) =
(𝑥 + 1) + √𝑥2 − 6𝑥 + 1

4
 

和 

𝑢2(𝑥) =
(𝑥 + 1) − √𝑥2 − 6𝑥 + 1

4
 

 

因為 𝐺(0) = 0，而 𝑢1(0) =
1

2
 不合。所以我們可以得到 

𝐺(𝑥) = 𝑢2(𝑥) =
(𝑥 + 1) − √𝑥2 − 6𝑥 + 1

4
 。                     (3.10) 
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然而，除了加括弧的方法之外，我們也可以於路徑走法中討論小施羅德數

的生成函數。在游博士與傅博士所著的〈A Simple Proof of the Aztec Diamond 

Theorem〉（[5]）一文中提到了小施羅德數在路徑中的定義： 

給定兩點 ( 0 , 0 ) 和 ( n , n )，其中 n ≥ 1，接著透過「平步」、「垂步」

及「斜步」的移動方式，從 ( 0 , 0 ) 移動到 ( n , n ) 且要求不穿過對角線 𝑦 = 𝑥 的

路徑，且不允許在對角線 𝑦 = 𝑥 上有斜步的移動方式，則根據以上敘述所求得的

路徑數即為小施羅德數 sn ，且顯而易見地 s1 = 1。 

另外我們也可以得到 sn 滿足的遞迴關係（詳細請參考[9]） 

sn = sn−1 + 2∑sjsn−j

n−1

j=2

   

= −sn−1 + 2∑sjsn−j

n−1

j=1

 。                                    (3.11) 

接著將方程式(3.11)的兩邊同乘 𝑥n ，再從 n = 2至 n = ∞ 取和，得到 

∑  sn 𝑥
n

∞

n=2

= −𝑥∑(sn−1 𝑥
n−1)

∞

n=2

+ 2∑[ ∑(sj 𝑥
j)(sn−j 𝑥

n−j)

n−1

j=1

 ]

∞

n=2

 ， (3.12) 

由式子(3.12)可以得到一個二元一次方程式 

2𝐺(𝑥)2 + (−𝑥 − 1)𝐺(𝑥) + 𝑥 = 0 ， 

我們也可以得到式子(3.10)， 

𝐺(𝑥) =
(𝑥 + 1) − √𝑥2 − 6𝑥 + 1

4
 。 

所以，我們可以透過大、小施羅德數列的生成函數發現兩者之間的關係為 

Rn = 2sn+1 ， 

其中 n ≥ 1。 

因此，我們可以利用 Rn = 2sn+1 以及定理 3.1.1 中的式子(3.6)直接推得以

下的定理 3.1.2。 
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定理 3.1.2 當 n ≥ 2 時，透過小施羅德數列的生成函數，我們可以求得小施羅德

數的一般公式 

sn = (
3

2
)
n+1

∑(−1)r(3−1−2r) 
(2n − 2r − 2)!

r! (n − r − 1)! (n − 2r)!

⌊ 
n
2
 ⌋ 

r=0

 ，   (3.13) 

且 s1 = 1。 
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第三節 結論 

在第三章中，對大小施羅德數做了更深入的探討。第一節，先利用了大施

羅德數裡「從點 ( 0 , 0 ) 移動至 ( n , n ) 」的這項在路徑中的定義，從中發現了

它的遞迴關係，並且利用此關係找到了其生成函數所構成的方程式，以及求出方

程式的解；然後再透過一步步地推導，求得了大施羅德數的一般公式，也簡單地

利用求出來的公式，算出大施羅德數列前面幾項的值。 

接著在第二節中，也效法第一節大施羅德數的方式，試著找出小施羅德數

的一般公式。就如同第一節，一樣於小施羅德數的定義找到了它的遞迴關係，並

利用第一節所得到的一些結果，進而推導出了小施羅德數的一般公式，更在研讀

文獻時找到了小施羅德數於路徑中的組合意義。此外，在研究施羅德數之生成函

數的過程中，也理解了大、小施羅德數之間的奇妙關係。儘管在本章中利用生成

函數所求得的公式與利用定義直接推導的公式不同，但是因為出發點相同，所以

依然能夠得到同樣的結果。 

在這次論文的研究過程中，可以發現路徑在組合數學中的使用是如此的廣

泛，而且在透過各種條件的加以限制後，還能夠得到各式各樣的新問題。而且這

些問題或許也代表著其他不同題目的答案呢！而本論文所討論與整理的施羅德

數便是其中的一種。所以，讀者們不妨也可以思考看看，是否有其他相關的有趣

問題吧。 
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